Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A novel type of thioredoxin dedicated to symbiosis in legumes.

Identifieur interne : 003A05 ( Main/Exploration ); précédent : 003A04; suivant : 003A06

A novel type of thioredoxin dedicated to symbiosis in legumes.

Auteurs : Fatima Alkhalfioui [France] ; Michelle Renard ; Pierre Frendo ; Corinne Keichinger ; Yves Meyer ; Eric Gelhaye ; Masakazu Hirasawa ; David B. Knaff ; Christophe Ritzenthaler ; Françoise Montrichard

Source :

RBID : pubmed:18614707

Descripteurs français

English descriptors

Abstract

Thioredoxins (Trxs) constitute a family of small proteins in plants. This family has been extensively characterized in Arabidopsis (Arabidopsis thaliana), which contains six different Trx types: f, m, x, and y in chloroplasts, o in mitochondria, and h mainly in cytosol. A detailed study of this family in the model legume Medicago truncatula, realized here, has established the existence of two isoforms that do not belong to any of the types previously described. As no possible orthologs were further found in either rice (Oryza sativa) or poplar (Populus spp.), these novel isoforms may be specific for legumes. Nevertheless, on the basis of protein sequence and gene structure, they are both related to Trxs m and probably have evolved from Trxs m after the divergence of the higher plant families. They have redox potential values similar to those of the classical Trxs, and one of them can act as a substrate for the M. truncatula NADP-Trx reductase A. However, they differ from classical Trxs in that they possess an atypical putative catalytic site and lack disulfide reductase activity with insulin. Another important feature is the presence in both proteins of an N-terminal extension containing a putative signal peptide that targets them to the endoplasmic reticulum, as demonstrated by their transient expression in fusion with the green fluorescent protein in M. truncatula or Nicotiana benthamiana leaves. According to their pattern of expression, these novel isoforms function specifically in symbiotic interactions in legumes. They were therefore given the name of Trxs s, s for symbiosis.

DOI: 10.1104/pp.108.123778
PubMed: 18614707
PubMed Central: PMC2528116


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A novel type of thioredoxin dedicated to symbiosis in legumes.</title>
<author>
<name sortKey="Alkhalfioui, Fatima" sort="Alkhalfioui, Fatima" uniqKey="Alkhalfioui F" first="Fatima" last="Alkhalfioui">Fatima Alkhalfioui</name>
<affiliation wicri:level="3">
<nlm:affiliation>Physiologie Moléculaire des Semences, UMR 1191 Université d'Angers-Institut National d'Horticulture-INRA, IFR 149 QUASAV, ARES, 49045 Angers cedex 01, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Physiologie Moléculaire des Semences, UMR 1191 Université d'Angers-Institut National d'Horticulture-INRA, IFR 149 QUASAV, ARES, 49045 Angers cedex 01</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Angers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Renard, Michelle" sort="Renard, Michelle" uniqKey="Renard M" first="Michelle" last="Renard">Michelle Renard</name>
</author>
<author>
<name sortKey="Frendo, Pierre" sort="Frendo, Pierre" uniqKey="Frendo P" first="Pierre" last="Frendo">Pierre Frendo</name>
</author>
<author>
<name sortKey="Keichinger, Corinne" sort="Keichinger, Corinne" uniqKey="Keichinger C" first="Corinne" last="Keichinger">Corinne Keichinger</name>
</author>
<author>
<name sortKey="Meyer, Yves" sort="Meyer, Yves" uniqKey="Meyer Y" first="Yves" last="Meyer">Yves Meyer</name>
</author>
<author>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
</author>
<author>
<name sortKey="Hirasawa, Masakazu" sort="Hirasawa, Masakazu" uniqKey="Hirasawa M" first="Masakazu" last="Hirasawa">Masakazu Hirasawa</name>
</author>
<author>
<name sortKey="Knaff, David B" sort="Knaff, David B" uniqKey="Knaff D" first="David B" last="Knaff">David B. Knaff</name>
</author>
<author>
<name sortKey="Ritzenthaler, Christophe" sort="Ritzenthaler, Christophe" uniqKey="Ritzenthaler C" first="Christophe" last="Ritzenthaler">Christophe Ritzenthaler</name>
</author>
<author>
<name sortKey="Montrichard, Francoise" sort="Montrichard, Francoise" uniqKey="Montrichard F" first="Françoise" last="Montrichard">Françoise Montrichard</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18614707</idno>
<idno type="pmid">18614707</idno>
<idno type="doi">10.1104/pp.108.123778</idno>
<idno type="pmc">PMC2528116</idno>
<idno type="wicri:Area/Main/Corpus">003843</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003843</idno>
<idno type="wicri:Area/Main/Curation">003843</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003843</idno>
<idno type="wicri:Area/Main/Exploration">003843</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A novel type of thioredoxin dedicated to symbiosis in legumes.</title>
<author>
<name sortKey="Alkhalfioui, Fatima" sort="Alkhalfioui, Fatima" uniqKey="Alkhalfioui F" first="Fatima" last="Alkhalfioui">Fatima Alkhalfioui</name>
<affiliation wicri:level="3">
<nlm:affiliation>Physiologie Moléculaire des Semences, UMR 1191 Université d'Angers-Institut National d'Horticulture-INRA, IFR 149 QUASAV, ARES, 49045 Angers cedex 01, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Physiologie Moléculaire des Semences, UMR 1191 Université d'Angers-Institut National d'Horticulture-INRA, IFR 149 QUASAV, ARES, 49045 Angers cedex 01</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Angers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Renard, Michelle" sort="Renard, Michelle" uniqKey="Renard M" first="Michelle" last="Renard">Michelle Renard</name>
</author>
<author>
<name sortKey="Frendo, Pierre" sort="Frendo, Pierre" uniqKey="Frendo P" first="Pierre" last="Frendo">Pierre Frendo</name>
</author>
<author>
<name sortKey="Keichinger, Corinne" sort="Keichinger, Corinne" uniqKey="Keichinger C" first="Corinne" last="Keichinger">Corinne Keichinger</name>
</author>
<author>
<name sortKey="Meyer, Yves" sort="Meyer, Yves" uniqKey="Meyer Y" first="Yves" last="Meyer">Yves Meyer</name>
</author>
<author>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
</author>
<author>
<name sortKey="Hirasawa, Masakazu" sort="Hirasawa, Masakazu" uniqKey="Hirasawa M" first="Masakazu" last="Hirasawa">Masakazu Hirasawa</name>
</author>
<author>
<name sortKey="Knaff, David B" sort="Knaff, David B" uniqKey="Knaff D" first="David B" last="Knaff">David B. Knaff</name>
</author>
<author>
<name sortKey="Ritzenthaler, Christophe" sort="Ritzenthaler, Christophe" uniqKey="Ritzenthaler C" first="Christophe" last="Ritzenthaler">Christophe Ritzenthaler</name>
</author>
<author>
<name sortKey="Montrichard, Francoise" sort="Montrichard, Francoise" uniqKey="Montrichard F" first="Françoise" last="Montrichard">Françoise Montrichard</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Antibodies (metabolism)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Medicago truncatula (physiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Protein Isoforms (MeSH)</term>
<term>Rabbits (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Thioredoxins (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Anticorps (métabolisme)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Isoformes de protéines (MeSH)</term>
<term>Lapins (MeSH)</term>
<term>Medicago truncatula (physiologie)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Symbiose (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antibodies</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Endoplasmic Reticulum</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Anticorps</term>
<term>Arabidopsis</term>
<term>Escherichia coli</term>
<term>Réticulum endoplasmique</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Molecular Sequence Data</term>
<term>Protein Isoforms</term>
<term>Rabbits</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Isoformes de protéines</term>
<term>Lapins</term>
<term>Symbiose</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thioredoxins (Trxs) constitute a family of small proteins in plants. This family has been extensively characterized in Arabidopsis (Arabidopsis thaliana), which contains six different Trx types: f, m, x, and y in chloroplasts, o in mitochondria, and h mainly in cytosol. A detailed study of this family in the model legume Medicago truncatula, realized here, has established the existence of two isoforms that do not belong to any of the types previously described. As no possible orthologs were further found in either rice (Oryza sativa) or poplar (Populus spp.), these novel isoforms may be specific for legumes. Nevertheless, on the basis of protein sequence and gene structure, they are both related to Trxs m and probably have evolved from Trxs m after the divergence of the higher plant families. They have redox potential values similar to those of the classical Trxs, and one of them can act as a substrate for the M. truncatula NADP-Trx reductase A. However, they differ from classical Trxs in that they possess an atypical putative catalytic site and lack disulfide reductase activity with insulin. Another important feature is the presence in both proteins of an N-terminal extension containing a putative signal peptide that targets them to the endoplasmic reticulum, as demonstrated by their transient expression in fusion with the green fluorescent protein in M. truncatula or Nicotiana benthamiana leaves. According to their pattern of expression, these novel isoforms function specifically in symbiotic interactions in legumes. They were therefore given the name of Trxs s, s for symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18614707</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>11</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>148</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2008</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A novel type of thioredoxin dedicated to symbiosis in legumes.</ArticleTitle>
<Pagination>
<MedlinePgn>424-35</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.108.123778</ELocationID>
<Abstract>
<AbstractText>Thioredoxins (Trxs) constitute a family of small proteins in plants. This family has been extensively characterized in Arabidopsis (Arabidopsis thaliana), which contains six different Trx types: f, m, x, and y in chloroplasts, o in mitochondria, and h mainly in cytosol. A detailed study of this family in the model legume Medicago truncatula, realized here, has established the existence of two isoforms that do not belong to any of the types previously described. As no possible orthologs were further found in either rice (Oryza sativa) or poplar (Populus spp.), these novel isoforms may be specific for legumes. Nevertheless, on the basis of protein sequence and gene structure, they are both related to Trxs m and probably have evolved from Trxs m after the divergence of the higher plant families. They have redox potential values similar to those of the classical Trxs, and one of them can act as a substrate for the M. truncatula NADP-Trx reductase A. However, they differ from classical Trxs in that they possess an atypical putative catalytic site and lack disulfide reductase activity with insulin. Another important feature is the presence in both proteins of an N-terminal extension containing a putative signal peptide that targets them to the endoplasmic reticulum, as demonstrated by their transient expression in fusion with the green fluorescent protein in M. truncatula or Nicotiana benthamiana leaves. According to their pattern of expression, these novel isoforms function specifically in symbiotic interactions in legumes. They were therefore given the name of Trxs s, s for symbiosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alkhalfioui</LastName>
<ForeName>Fatima</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Physiologie Moléculaire des Semences, UMR 1191 Université d'Angers-Institut National d'Horticulture-INRA, IFR 149 QUASAV, ARES, 49045 Angers cedex 01, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Renard</LastName>
<ForeName>Michelle</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frendo</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keichinger</LastName>
<ForeName>Corinne</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Yves</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gelhaye</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hirasawa</LastName>
<ForeName>Masakazu</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Knaff</LastName>
<ForeName>David B</ForeName>
<Initials>DB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ritzenthaler</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Montrichard</LastName>
<ForeName>Françoise</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>07</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000906">Antibodies</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000906" MajorTopicYN="N">Antibodies</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18614707</ArticleId>
<ArticleId IdType="pii">pp.108.123778</ArticleId>
<ArticleId IdType="doi">10.1104/pp.108.123778</ArticleId>
<ArticleId IdType="pmc">PMC2528116</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1707-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):23747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12707279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1006-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2004 Apr;42(4):265-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15120110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 May 19;23(10):2156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15385674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3159-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Oct 10;254(19):9627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">385588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1988 Nov 1;266(2):496-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3190242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 May 15;287(1):195-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1897989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 Jul;288(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1910303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Jan 28;235(4):1357-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8308900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1995;195(3):456-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7766047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5620-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7777559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Jun;28(3):487-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7632918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:240-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Sep;8(9):1641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8837514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Apr 20;38(16):5200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10213627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1987;171:321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11539727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Mar;56(413):825-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:187-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1513-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1881-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):419-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3418-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16354655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Jul 24;580(17):4236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16831430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):179-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):673-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(5):969-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Jan;6(1):e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Nov 29;240(2):307-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10580150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Dec;121(4):1127-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10594100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14144-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;347:394-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(4):481-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12445120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):161-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 May 22;543(1-3):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675753</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Pays de la Loire</li>
</region>
<settlement>
<li>Angers</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Frendo, Pierre" sort="Frendo, Pierre" uniqKey="Frendo P" first="Pierre" last="Frendo">Pierre Frendo</name>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
<name sortKey="Hirasawa, Masakazu" sort="Hirasawa, Masakazu" uniqKey="Hirasawa M" first="Masakazu" last="Hirasawa">Masakazu Hirasawa</name>
<name sortKey="Keichinger, Corinne" sort="Keichinger, Corinne" uniqKey="Keichinger C" first="Corinne" last="Keichinger">Corinne Keichinger</name>
<name sortKey="Knaff, David B" sort="Knaff, David B" uniqKey="Knaff D" first="David B" last="Knaff">David B. Knaff</name>
<name sortKey="Meyer, Yves" sort="Meyer, Yves" uniqKey="Meyer Y" first="Yves" last="Meyer">Yves Meyer</name>
<name sortKey="Montrichard, Francoise" sort="Montrichard, Francoise" uniqKey="Montrichard F" first="Françoise" last="Montrichard">Françoise Montrichard</name>
<name sortKey="Renard, Michelle" sort="Renard, Michelle" uniqKey="Renard M" first="Michelle" last="Renard">Michelle Renard</name>
<name sortKey="Ritzenthaler, Christophe" sort="Ritzenthaler, Christophe" uniqKey="Ritzenthaler C" first="Christophe" last="Ritzenthaler">Christophe Ritzenthaler</name>
</noCountry>
<country name="France">
<region name="Pays de la Loire">
<name sortKey="Alkhalfioui, Fatima" sort="Alkhalfioui, Fatima" uniqKey="Alkhalfioui F" first="Fatima" last="Alkhalfioui">Fatima Alkhalfioui</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003A05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18614707
   |texte=   A novel type of thioredoxin dedicated to symbiosis in legumes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18614707" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020